

Semester – V

Subject Name: Electric Vehicle Technologies

Subject Code: 09EE2505

Diploma Branch in which this subject is offered: Electrical Engineering

Objective: Main objective of subject is to introduce major parts of electric vehicle system, its parameters, battery, charging system and safety.

Credits Earned: 4 Credits

Course Outcomes: After completion of this course, the student will be able

1. Understand electric vehicle, and its applications
2. Understand selection of appropriate motor for EV applications
3. Understand requirement of battery type, characteristics for EV applications
4. Understand requirement of power train & in-wheel drive operation
5. Understand safety requirement for EVs

Pre-requisite of course: Basic electrical engineering and Electrical Software Skill-2

Teaching and Examination Scheme

Teaching Scheme (Hours)			Credits	Theory Marks			Tutorial/ Practical Marks		Total Marks
Theory	Tutorial	Practical		ESE	IA	CSE	Viva	Term work	
2	0	4	4	50	30	20	25	25	150

Contents:

Unit	Topics	Contact hours	Weightage (%)
1	Introduction to EV & HEV: <ul style="list-style-type: none"> • Past, Present & Feature of EV • Current Major Issues • Recent Development Trends • Comparison of EV Vs IC Engine. 	05	18
2	Motors for EV: <ul style="list-style-type: none"> • Type of wound-field DC Motor, Torque speed characteristics • Speed control of DC Motor • Suitability and limitation • BLDC motor Construction, operation and speed control • Three Phase Inverter Based Induction Motor • Advantages over DC motor 	10	36

	<ul style="list-style-type: none"> • Speed torque characteristics • Speed Control 		
3	Power Train: <ul style="list-style-type: none"> • EV Configuration • Fixed & variable gearing • single & multiple motor drive • In-wheel drives 	04	14
4	EV Battery <ul style="list-style-type: none"> • EV Battery Types • Battery Characteristics (Charging & Discharging) • Comparisons • Safety & Precautions 	04	14
5	EV Charging System <ul style="list-style-type: none"> • Domestic Charging Infrastructure • Public Charging Infrastructure • Normal Charging Station • Occasional Charging Station • Fast Charging Station • Battery Swapping Station • Move-and-charge zone. 	05	18

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation					
Remember	Understand	Apply	Analyse	Evaluate	Create
35%	35%	15%	15%	0%	0%

Suggested List of Practical/Exercise:

Sr. No.	Unit No.	Name of Topics	Contact Hours
1	1	To identify limitations of modern electrical vehicle	4
2	2	To Simulate and Compare starting torque of DC Shunt motor and DC Series motor.	4
3	2	To simulate starting Performance of Three phase Induction Motor.	4
4	2	To compare of Performance Characteristics of DC and Induction Motors for EVs.	4
5	2	To Revers the direction of Three Phase Induction motor.	4

6	2	To simulate speed control of brushed DC motor	6
7	2	To simulate a three phase inverter for driving a brushless DC motor	6
8	3	To compare power train for modern electrical vehicles.	6
9	4	To compare different energy sources for modern electric vehicle.	6
10	4	To Study Battery Charging System for Lead Acid Battery.	4
11	5	To Study Battery Charging System for Li-ion Battery.	4
12	5	To study safety and protection requirement of Li-ion Battery.	4

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory.
- e. Show video or animation of working of various types of wiring system and electrical transmission and distribution network

References:

1. C.C Chan, K.T Chau, "Modern Electric Vehicle Technology", Oxford University Press Inc., New York 2001
2. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.
3. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004.
4. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

Supplementary Resources:

1. <https://nptel.ac.in/courses/108102121/>
2. <https://nptel.ac.in/courses/108103009/>